Problem A. 7

Evaluate $\int \mathbf{r} \cdot(\mathbf{a}-\mathbf{r}) \delta^{3}(\mathbf{r}-\mathbf{b}) d^{3} r$, if $\mathbf{a}=(1,2,3), \mathbf{b}=(3,2,1)$, and the integration is over a sphere of radius 1.5 centered at $(2,2,2)$.

Solution

The aim is to determine whether the point with position vector $\mathbf{b}=(3,2,1)$ lies inside the sphere centered at $(2,2,2)$ with radius 1.5 . Calculate the distance between these two points.

$$
d=\sqrt{(3-2)^{2}+(2-2)^{2}+(1-2)^{2}}=\sqrt{2} \approx 1.414
$$

Since it's less than 1.5, the point with position vector \mathbf{b} lies inside the sphere, and

$$
\begin{aligned}
\int \mathbf{r} \cdot(\mathbf{a}-\mathbf{r}) \delta^{3}(\mathbf{r}-\mathbf{b}) d^{3} r & =\left.[\mathbf{r} \cdot(\mathbf{a}-\mathbf{r})]\right|_{\mathbf{r}=\mathbf{b}} \\
& =\mathbf{b} \cdot(\mathbf{a}-\mathbf{b}) \\
& =(3,2,1) \cdot(-2,0,2) \\
& =3(-2)+2(0)+1(2) \\
& =-4 .
\end{aligned}
$$

